
Porting COSMO to

Hybrid Architectures

T. Gysi1, O. Fuhrer2, C. Osuna3, X. Lapillonne3,

T. Diamanti3, B. Cumming4, T. Schroeder5,

P. Messmer5, T. Schulthess4,6,7
[1] Supercomputing Systems AG, [2] Swiss Federal Office of Meteorology and Climatology ,

[3] Center for Climate Systems Modeling, ETH Zurich, [4] Swiss National Supercomputing Center (CSCS),

[5] NVIDIA Corp., [6] Institute for Theoretical Physics, ETH Zurich, [7] Computer Science and Mathematics Division, ORNL

Programming weather, climate and earth-system models

on heterogeneous multi-core platforms

Sept 12 – 13, 2012, NCAR, Boulder, CO

http://www.ethz.ch/index_EN
http://www.ethz.ch/index_EN

Why Improving COSMO?

COSMO: Consortium for Small-Scale Modeling

Limited-area climate model - http://www.cosmo-model.org/

Used by 7 weather services and O(50) universities and research institutes

High CPU usage @ CSCS (Swiss National Supercomputing Center)

30 Mio CPU hours in total

~ 50% on a dedicated machine

Strong desire for improved simulation quality

Higher resolution

Larger ensemble simulations

Increasing model complexity

 Performance improvements are critical!

http://www.cosmo-model.org/
http://www.cosmo-model.org/
http://www.cosmo-model.org/

Need for Higher Resolution in Switzerland

Resolution is of key importance

to increase simulation quality

2x resolution ≈ 10x

computational cost

dx =2km

dx =1km

Reality

COSMO port to hybrid architectures is

part of HP2C Project

• Part of the Swiss HPCN strategy (hardware / infrastructure / software)

• Strong focus on hybrid architectures for real world applications

• 10 Projects from different domains - http://www.hp2c.ch/

Cardiovascular simulation (EPFL)

Stellar explosions (University of Basel)

Quantum dynamics (University of Geneva)

…

COSMO-CCLM

1. Cloud resolving climate simulations (IPCC AR5)

2. Adapt existing code (hybrid, I/O)

3. Aggressive developments (different programming languages, GPUs)

http://www.hp2c.ch/

Refactoring Approach

Physics

Large group of developers

Plug-in code from other models

Less memory bandwidth bound

Simpler stencils (K-dependencies)

20% of runtime

 Keep source code (Fortran)

 GPU port with directives (OpenACC)

Dynamics

Small group of developers

Memory bandwidth bound

Complex stencils (IJK-dependencies)

60% of runtime

 Aggressive rewrite in C++

 Development of a stencil library

 Still single source code multiple library

back-ends for x86 / GPU

Lines of Code Runtime

Requirements for a Portable Stencil Library

loop-logic update-function / stencil

DO k = 1, ke

 DO j = jstart, jend

 DO i = istart, iend

 lap(i,j,k) = data(i+1,j,k)+data(i-1,j,k)+data(i,j+1,k)+data(i,j-1,k) – 4.0*data(i,j,k)

 ENDDO

 ENDDO

ENDDO

Loop-logic: Defines stencil application domain
Platform dependent

Update-function: Expression evaluated at each location

Platform independent

=> Treat two components separately

Loop-Logic expressed in Domain Specific

Language (DSL)

Define embedded domain specific

language in C++ using type

system/template metaprogramming
Code is written as type

Type is translated into sequence of

operations (DSL compilation) at compile

time

Operation objects (“code fragments”) are

inserted at compile time (code generation)

Pre-packaged loop objects for CPU and

GPU

We use this approach to generate the

platform dependent loop-logic

Library loop objects

ApplyBlocks

OpenMP

LoopOverBlock

OpenMP

LoopOverBlock

CUDA

ApplyBlocks

CUDA

DSL loop definition

Platform dependent loop code

Compiler

LoopOverBlock

CUDA

ApplyBlocks

CUDA

enum { data, lap };

template<typename TEnv>

struct LapStage

{

 STENCIL_STAGE(TEnv)

 STAGE_PARAMETER(FullDomain, data)

 STAGE_PARAMETER(FullDomain, lap)

 static void Do(Context ctx, FullDomain)

 {

 ctx[lap::Center()] =

 -4.0 * ctx[data::Center()] +

 ctx[data::At(iplus1)] +

 ctx[data::At(iminus1)] +

 ctx[data::At(jplus1)] +

 ctx[data::At(jminus1)];

 }

};

IJKRealField laplacian, pressure;

Stencil stencil;

StencilCompiler::Build(

 stencil,

 "Example",

 calculationDomainSize,

 StencilConfiguration<Real, BlockSize<32,4> >(),

 ….

 define_sweep<KLoopFullDomain>(

 define_stages(

 StencilStage<LapStage, IJBoundary<cComplete,0,0,0,0> >()

)

)

);

stencil.Apply();

Putting it all together..

Stencil Library Parallelization
Shared memory parallelization

Support for 2 levels of parallelism

Coarse grained parallelism

Split domain into blocks

Distribute blocks to CPU cores

No synchronization & consistency

required

Fine grained parallelism

Update block on a single core

Lightweight threads / vectors

Synchronization & consistency required

IJ plane

block0 block1

block2 block3

Coarse grained

parallelism (multi-core)

Fine grained

parallelism

(vectorization)

~ CUDA programming model

(should be a good match for other platforms as well)

GPU Backend Overview

Storage

IJK storage order

Coalesced reads in I direction

Parallelization

Parallelize in IJ dimension (blocks

are mapped to CUDA blocks)

Block boundary elements are

updated using additional warps

Data field indexing

Store data field pointers and

strides in shared memory

Store indexes in registers

Block with

boundary

(use additional

boundary warps)

CUDA grid splits IJ

plane into blocks

HP2C Dycore Performance

CPU / OpenMP Backend

Factor 1.6x – 1.7x faster than the standard COSMO implementation

Here: no SSE support (expect another 10% ~30% improvement)

GPU / CUDA backend

Tesla M2090 (150 GB/s with ECC enabled) is roughly a factor 2.6x faster

than Interlagos (16-Core Opteron CPU with 52 GB/s)

Ongoing performance optimization

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

CPU Fortran (Interlagos)

CPU HP2C (Interlagos)

GPU HP2C (Tesla C2090)

Speedup

Acceleration of Physical Parametrizations:

Current State
Parametrizations : processes not described by the dynamics, such as radiation or turbulence.

Account for about 20 to 25 % of total runtime

GPU versions of the parametrizations have been implemented in COSMO

Currently implemented and tested physics:

Microphysics (Reinhardt and Seifert, 2006)

Radiation (Ritter and Geleyn, 1992)

Turbulence (Raschendorfer, 2001)

Soil (Heise, 1991)

Account for 90-95% of physics in typical COSMO-2 run

Only options for operational runs are supported
Unsupported features have been documented

Directives/Compiler choices for OPCODE

OpenAcc: Open standard, supported by 3 compiler vendors PGI, Cray, Caps

Directives of choice for final OPCODE version

CAPS: Future approach

PGI proprietary:

Enabled port of all kernels (some workarounds required)

First implementation of the physics

Translation to OpenAcc relatively straight forward

 !$acc parallel loop vector_length(N)

 do i=1,N

 a(i)=b(i)+c(i)

 end do

 !$acc end parallel loop => Testing code with different compilers can be very helpful!

Implementation in COSMO
Change to block data structure inside the physics

f(i,j,k) -> f_b(nproma,ke), with nproma = istartpar x iendpar / nblock.

nblock=1 for GPU run)

Physics loop restructured to iterate over blocks

transfer from CPU to GPU (ijk data f(i,j,k))
!start block loop
 do ib=1,nblock

 call copy_to block
 call organize_gscp
 call organize_radiation
 call organize_turbulence
 call organize_soil
 call copy_back

 end do
transfer back GPU to CPU (ijk data f(i,j,k))

Required data on the GPU

All operations on grid data computed on the GPU

Physics timing region

inside physics scheme data is in block form

f_b(nproma,ke)

Porting Strategy for Parametrizations

Pencil Parallelization: horizontal direction, 1 thread per vertical column
Most loop structures unchanged, one only adds directives

In some parts: loop restructuring to reduce kernel call overheads, and profit from cache reuse.

Remove NEC vector-optimization.

Remove Fortran automatic arrays in subroutines which are often called (to avoid call to cudamalloc)

Data regions to avoid CPU-GPU transfer

Use profiler to target specific parts which need further optimization: reduce memory usage, replace

intermediate arrays with scalars …

!$acc data present(a,c1,c2)

!vertical loop

do k=2,Nz

 !work 1

 !$acc parallel loop vector_length(N)

 do ip=1,nproma

 c2(ip)=c1(ip,k)*a(ip,k-1))

 end do

 !$acc end parallel loop

!work 2

!$acc parallel loop vector_length(N))

do ip=1,nproma

 a(ip,k)=c2(ip)*a(ip,k-1)

end do

!$acc end parallel loop

end do

!$acc end data

!$acc data present(a,c1)

!$acc parallel loop vector_length(N)

do ip=1,nproma

 !vertical loop

 do k=2,Nz

 !work 1

 c2=c1(ip,k)*a(ip,k-1)

 !work 2

 a(ip,k)=c2*a(ip,k-1)

 end do

end do

!$acc end parallel loop

!$acc end data

GPU/CPU comparison

Benchmark subdomain 128x112x60, 1h simulation with microphysics, radiation, turbulence and soil

CPU-GPU results agree within roundoff error

CPU – original physics

16 cores (interlagos) – using MPI
GPU – block physics

1 core + 1 GPU (X2090)

Time physics: 42.4 s

 (average time, without communication)

Time physics: 12.5 s

GPU/CPU comparison, detail timing
Original

CPU time (s)

16 cores (Interlagos)

Block Physics

GPU time (s)

1 core + 1 GPU (X2090)

Speed up

Microphysics 15.7 (37%) 2.3 (18%) 6.8x

Radiation 11.1 (26%) 2.6 (20%) 4.3x

Turbulence 14.4 (34%) 5.1 (41%) 2.8x

Soil 1.2 (3%) 0.5 (4%) 2.4x

Copy ijk ↔ block - 2.0 (16%) -

Total physics 42.4 (100%) 12.5 (100%) 3.4x

Test subdomain 128x112x60, 1h simulation

Currently running the block physics code on CPU (i.e. ignoring directives) is slower (total physics = 53 s).

This is due to the GPU-loop reordering optimizations, not to the block structure. Having a single source

code that runs efficiently on x86-CPU (i.e. excluding NEC) and GPU will require further work.

The GPU code runs 7% faster on CASTOR (C2090)

Summary and next steps
Dycore ported using portable stencil library and DESL

Physics ported using directives

Dycore speedup of ~4x vs original code

Physics speedup of ~3.4x vs original code

Dycore speedup for relevant domain sizes retained for

K20/SandyBridge

Ongoing: Combining Dycore, Physics and Messaging Layer

Thank you!

pmessmer@nvidia.com

Need for Higher Resolution in Switzerland

Resolution is of key importance

to increase simulation quality

2x resolution ≈ 10x

computational cost

2.2 km
8.8 km

35km

